Paper ID: 2311.11542

Data-driven project planning: An integrated network learning and constraint relaxation approach in favor of scheduling

Izack Cohen

Our focus is on projects, i.e., business processes, which are emerging as the economic drivers of our times. Differently from day-to-day operational processes that do not require detailed planning, a project requires planning and resource-constrained scheduling for coordinating resources across sub- or related projects and organizations. A planner in charge of project planning has to select a set of activities to perform, determine their precedence constraints, and schedule them according to temporal project constraints. We suggest a data-driven project planning approach for classes of projects such as infrastructure building and information systems development projects. A project network is first learned from historical records. The discovered network relaxes temporal constraints embedded in individual projects, thus uncovering where planning and scheduling flexibility can be exploited for greater benefit. Then, the network, which contains multiple project plan variations, from which one has to be selected, is enriched by identifying decision rules and frequent paths. The planner can rely on the project network for: 1) decoding a project variation such that it forms a new project plan, and 2) applying resource-constrained project scheduling procedures to determine the project's schedule and resource allocation. Using two real-world project datasets, we show that the suggested approach may provide the planner with significant flexibility (up to a 26% reduction of the critical path of a real project) to adjust the project plan and schedule. We believe that the proposed approach can play an important part in supporting decision making towards automated data-driven project planning.

Submitted: Nov 20, 2023