Paper ID: 2311.12436

Classifier Calibration with ROC-Regularized Isotonic Regression

Eugene Berta, Francis Bach, Michael Jordan

Calibration of machine learning classifiers is necessary to obtain reliable and interpretable predictions, bridging the gap between model confidence and actual probabilities. One prominent technique, isotonic regression (IR), aims at calibrating binary classifiers by minimizing the cross entropy on a calibration set via monotone transformations. IR acts as an adaptive binning procedure, which allows achieving a calibration error of zero, but leaves open the issue of the effect on performance. In this paper, we first prove that IR preserves the convex hull of the ROC curve -- an essential performance metric for binary classifiers. This ensures that a classifier is calibrated while controlling for overfitting of the calibration set. We then present a novel generalization of isotonic regression to accommodate classifiers with K classes. Our method constructs a multidimensional adaptive binning scheme on the probability simplex, again achieving a multi-class calibration error equal to zero. We regularize this algorithm by imposing a form of monotony that preserves the K-dimensional ROC surface of the classifier. We show empirically that this general monotony criterion is effective in striking a balance between reducing cross entropy loss and avoiding overfitting of the calibration set.

Submitted: Nov 21, 2023