Paper ID: 2311.12603

Surgical Temporal Action-aware Network with Sequence Regularization for Phase Recognition

Zhen Chen, Yuhao Zhai, Jun Zhang, Jinqiao Wang

To assist surgeons in the operating theatre, surgical phase recognition is critical for developing computer-assisted surgical systems, which requires comprehensive understanding of surgical videos. Although existing studies made great progress, there are still two significant limitations worthy of improvement. First, due to the compromise of resource consumption, frame-wise visual features are extracted by 2D networks and disregard spatial and temporal knowledge of surgical actions, which hinders subsequent inter-frame modeling for phase prediction. Second, these works simply utilize ordinary classification loss with one-hot phase labels to optimize the phase predictions, and cannot fully explore surgical videos under inadequate supervision. To overcome these two limitations, we propose a Surgical Temporal Action-aware Network with sequence Regularization, named STAR-Net, to recognize surgical phases more accurately from input videos. Specifically, we propose an efficient multi-scale surgical temporal action (MS-STA) module, which integrates visual features with spatial and temporal knowledge of surgical actions at the cost of 2D networks. Moreover, we devise the dual-classifier sequence regularization (DSR) to facilitate the training of STAR-Net by the sequence guidance of an auxiliary classifier with a smaller capacity. Our STAR-Net with MS-STA and DSR can exploit visual features of surgical actions with effective regularization, thereby leading to the superior performance of surgical phase recognition. Extensive experiments on a large-scale gastrectomy surgery dataset and the public Cholec80 benchmark prove that our STAR-Net significantly outperforms state-of-the-arts of surgical phase recognition.

Submitted: Nov 21, 2023