Paper ID: 2311.12821

Advancing The Rate-Distortion-Computation Frontier For Neural Image Compression

David Minnen, Nick Johnston

The rate-distortion performance of neural image compression models has exceeded the state-of-the-art for non-learned codecs, but neural codecs are still far from widespread deployment and adoption. The largest obstacle is having efficient models that are feasible on a wide variety of consumer hardware. Comparative research and evaluation is difficult due to the lack of standard benchmarking platforms and due to variations in hardware architectures and test environments. Through our rate-distortion-computation (RDC) study we demonstrate that neither floating-point operations (FLOPs) nor runtime are sufficient on their own to accurately rank neural compression methods. We also explore the RDC frontier, which leads to a family of model architectures with the best empirical trade-off between computational requirements and RD performance. Finally, we identify a novel neural compression architecture that yields state-of-the-art RD performance with rate savings of 23.1% over BPG (7.0% over VTM and 3.0% over ELIC) without requiring significantly more FLOPs than other learning-based codecs.

Submitted: Sep 26, 2023