Paper ID: 2311.12947
PINNs-Based Uncertainty Quantification for Transient Stability Analysis
Ren Wang, Ming Zhong, Kaidi Xu, Lola Giráldez Sánchez-Cortés, Ignacio de Cominges Guerra
This paper addresses the challenge of transient stability in power systems with missing parameters and uncertainty propagation in swing equations. We introduce a novel application of Physics-Informed Neural Networks (PINNs), specifically an Ensemble of PINNs (E-PINNs), to estimate critical parameters like rotor angle and inertia coefficient with enhanced accuracy and reduced computational load. E-PINNs capitalize on the underlying physical principles of swing equations to provide a robust solution. Our approach not only facilitates efficient parameter estimation but also quantifies uncertainties, delivering probabilistic insights into the system behavior. The efficacy of E-PINNs is demonstrated through the analysis of $1$-bus and $2$-bus systems, highlighting the model's ability to handle parameter variability and data scarcity. The study advances the application of machine learning in power system stability, paving the way for reliable and computationally efficient transient stability analysis.
Submitted: Nov 21, 2023