Paper ID: 2311.13200

Self-guided Few-shot Semantic Segmentation for Remote Sensing Imagery Based on Large Vision Models

Xiyu Qi, Yifan Wu, Yongqiang Mao, Wenhui Zhang, Yidan Zhang

The Segment Anything Model (SAM) exhibits remarkable versatility and zero-shot learning abilities, owing largely to its extensive training data (SA-1B). Recognizing SAM's dependency on manual guidance given its category-agnostic nature, we identified unexplored potential within few-shot semantic segmentation tasks for remote sensing imagery. This research introduces a structured framework designed for the automation of few-shot semantic segmentation. It utilizes the SAM model and facilitates a more efficient generation of semantically discernible segmentation outcomes. Central to our methodology is a novel automatic prompt learning approach, leveraging prior guided masks to produce coarse pixel-wise prompts for SAM. Extensive experiments on the DLRSD datasets underline the superiority of our approach, outperforming other available few-shot methodologies.

Submitted: Nov 22, 2023