Paper ID: 2311.13623
Density Distribution-based Learning Framework for Addressing Online Continual Learning Challenges
Shilin Zhang, Jiahui Wang
In this paper, we address the challenges of online Continual Learning (CL) by introducing a density distribution-based learning framework. CL, especially the Class Incremental Learning, enables adaptation to new test distributions while continuously learning from a single-pass training data stream, which is more in line with the practical application requirements of real-world scenarios. However, existing CL methods often suffer from catastrophic forgetting and higher computing costs due to complex algorithm designs, limiting their practical use. Our proposed framework overcomes these limitations by achieving superior average accuracy and time-space efficiency, bridging the performance gap between CL and classical machine learning. Specifically, we adopt an independent Generative Kernel Density Estimation (GKDE) model for each CL task. During the testing stage, the GKDEs utilize a self-reported max probability density value to determine which one is responsible for predicting incoming test instances. A GKDE-based learning objective can ensure that samples with the same label are grouped together, while dissimilar instances are pushed farther apart. Extensive experiments conducted on multiple CL datasets validate the effectiveness of our proposed framework. Our method outperforms popular CL approaches by a significant margin, while maintaining competitive time-space efficiency, making our framework suitable for real-world applications. Code will be available at https://github.com/xxxx/xxxx.
Submitted: Nov 22, 2023