Paper ID: 2311.13720

Can LLMs Fix Issues with Reasoning Models? Towards More Likely Models for AI Planning

Turgay Caglar, Sirine Belhaj, Tathagata Chakraborti, Michael Katz, Sarath Sreedharan

This is the first work to look at the application of large language models (LLMs) for the purpose of model space edits in automated planning tasks. To set the stage for this union, we explore two different flavors of model space problems that have been studied in the AI planning literature and explore the effect of an LLM on those tasks. We empirically demonstrate how the performance of an LLM contrasts with combinatorial search (CS) -- an approach that has been traditionally used to solve model space tasks in planning, both with the LLM in the role of a standalone model space reasoner as well as in the role of a statistical signal in concert with the CS approach as part of a two-stage process. Our experiments show promising results suggesting further forays of LLMs into the exciting world of model space reasoning for planning tasks in the future.

Submitted: Nov 22, 2023