Paper ID: 2311.13729
Comparison of pipeline, sequence-to-sequence, and GPT models for end-to-end relation extraction: experiments with the rare disease use-case
Shashank Gupta, Xuguang Ai, Ramakanth Kavuluru
End-to-end relation extraction (E2ERE) is an important and realistic application of natural language processing (NLP) in biomedicine. In this paper, we aim to compare three prevailing paradigms for E2ERE using a complex dataset focused on rare diseases involving discontinuous and nested entities. We use the RareDis information extraction dataset to evaluate three competing approaches (for E2ERE): NER $\rightarrow$ RE pipelines, joint sequence to sequence models, and generative pre-trained transformer (GPT) models. We use comparable state-of-the-art models and best practices for each of these approaches and conduct error analyses to assess their failure modes. Our findings reveal that pipeline models are still the best, while sequence-to-sequence models are not far behind; GPT models with eight times as many parameters are worse than even sequence-to-sequence models and lose to pipeline models by over 10 F1 points. Partial matches and discontinuous entities caused many NER errors contributing to lower overall E2E performances. We also verify these findings on a second E2ERE dataset for chemical-protein interactions. Although generative LM-based methods are more suitable for zero-shot settings, when training data is available, our results show that it is better to work with more conventional models trained and tailored for E2ERE. More innovative methods are needed to marry the best of the both worlds from smaller encoder-decoder pipeline models and the larger GPT models to improve E2ERE. As of now, we see that well designed pipeline models offer substantial performance gains at a lower cost and carbon footprint for E2ERE. Our contribution is also the first to conduct E2ERE for the RareDis dataset.
Submitted: Nov 22, 2023