Paper ID: 2311.13951

MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria

Wentao Ge, Shunian Chen, Guiming Hardy Chen, Junying Chen, Zhihong Chen, Nuo Chen, Wenya Xie, Shuo Yan, Chenghao Zhu, Ziyue Lin, Song Dingjie, Xidong Wang, Anningzhe Gao, Zhang Zhiyi, Jianquan Li, Xiang Wan, Benyou Wang

Multimodal large language models (MLLMs) have broadened the scope of AI applications. Existing automatic evaluation methodologies for MLLMs are mainly limited in evaluating queries without considering user experiences, inadequately addressing the nuances of creative and associative multimodal tasks. However, the open-ended and subjective nature of such tasks poses a significant challenge to the evaluation methodology, where it is difficult to define the ground-truth answers for them. To this end, in our paper, we propose a new evaluation paradigm for MLLMs, which is evaluating MLLMs with per-sample criteria using potent MLLM as the judge. To validate the feasibility and effectiveness of this paradigm, we design a benchmark, dubbed MLLM-Bench, by curating the evaluation samples across six comprehensive cognitive levels. We benchmark 21 popular MLLMs in a pairwise-comparison fashion, showing diverse performance across models. Moreover, the validity of our benchmark manifests itself in reaching 88.02% agreement with human evaluation. We contend that the proposed paradigm explores the potential of MLLMs as effective evaluation tools with the help of per-sample criteria. See online leaderboard at \url{this https URL}.

Submitted: Nov 23, 2023