Paper ID: 2311.14323
Binarized 3D Whole-body Human Mesh Recovery
Zhiteng Li, Yulun Zhang, Jing Lin, Haotong Qin, Jinjin Gu, Xin Yuan, Linghe Kong, Xiaokang Yang
3D whole-body human mesh recovery aims to reconstruct the 3D human body, face, and hands from a single image. Although powerful deep learning models have achieved accurate estimation in this task, they require enormous memory and computational resources. Consequently, these methods can hardly be deployed on resource-limited edge devices. In this work, we propose a Binarized Dual Residual Network (BiDRN), a novel quantization method to estimate the 3D human body, face, and hands parameters efficiently. Specifically, we design a basic unit Binarized Dual Residual Block (BiDRB) composed of Local Convolution Residual (LCR) and Block Residual (BR), which can preserve full-precision information as much as possible. For LCR, we generalize it to four kinds of convolutional modules so that full-precision information can be propagated even between mismatched dimensions. We also binarize the face and hands box-prediction network as Binaried BoxNet, which can further reduce the model redundancy. Comprehensive quantitative and qualitative experiments demonstrate the effectiveness of BiDRN, which has a significant improvement over state-of-the-art binarization algorithms. Moreover, our proposed BiDRN achieves comparable performance with full-precision method Hand4Whole while using just 22.1% parameters and 14.8% operations. We will release all the code and pretrained models.
Submitted: Nov 24, 2023