Paper ID: 2311.15097

AugmentTRAJ: A framework for point-based trajectory data augmentation

Yaksh J Haranwala

Data augmentation has emerged as a powerful technique in machine learning, strengthening model robustness while mitigating overfitting and under-fitting issues by generating diverse synthetic data. Nevertheless, despite its success in other domains, data augmentation's potential remains largely untapped in mobility data analysis, primarily due to the intricate nature and unique format of trajectory data. Additionally, there is a lack of frameworks capable of point-wise data augmentation, which can reliably generate synthetic trajectories while preserving the inherent characteristics of the original data. To address these challenges, this research introduces AugmenTRAJ, an open-source Python3 framework designed explicitly for trajectory data augmentation. AugmenTRAJ offers a reliable and well-controlled approach for generating synthetic trajectories, thereby enabling the harnessing of data augmentation benefits in mobility analysis. This thesis presents a comprehensive overview of the methodologies employed in developing AugmenTRAJ and showcases the various data augmentation techniques available within the framework. AugmenTRAJ opens new possibilities for enhancing mobility data analysis models' performance and generalization capabilities by providing researchers with a practical and versatile tool for augmenting trajectory data, Its user-friendly implementation in Python3 facilitates easy integration into existing workflows, offering the community an accessible resource to leverage the full potential of data augmentation in trajectory-based applications.

Submitted: Nov 25, 2023