Paper ID: 2311.15301
Eye Disease Prediction using Ensemble Learning and Attention on OCT Scans
Gauri Naik, Nandini Narvekar, Dimple Agarwal, Nishita Nandanwar, Himangi Pande
Eye diseases have posed significant challenges for decades, but advancements in technology have opened new avenues for their detection and treatment. Machine learning and deep learning algorithms have become instrumental in this domain, particularly when combined with Optical Coherent Technology (OCT) imaging. We propose a novel method for efficient detection of eye diseases from OCT images. Our technique enables the classification of patients into disease free (normal eyes) or affected by specific conditions such as Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), or Drusen. In this work, we introduce an end to end web application that utilizes machine learning and deep learning techniques for efficient eye disease prediction. The application allows patients to submit their raw OCT scanned images, which undergo segmentation using a trained custom UNet model. The segmented images are then fed into an ensemble model, comprising InceptionV3 and Xception networks, enhanced with a self attention layer. This self attention approach leverages the feature maps of individual models to achieve improved classification accuracy. The ensemble model's output is aggregated to predict and classify various eye diseases. Extensive experimentation and optimization have been conducted to ensure the application's efficiency and optimal performance. Our results demonstrate the effectiveness of the proposed approach in accurate eye disease prediction. The developed web application holds significant potential for early detection and timely intervention, thereby contributing to improved eye healthcare outcomes.
Submitted: Nov 26, 2023