Paper ID: 2311.15741

Machine Learning-Based Jamun Leaf Disease Detection: A Comprehensive Review

Auvick Chandra Bhowmik, Dr. Md. Taimur Ahad, Yousuf Rayhan Emon

Jamun leaf diseases pose a significant threat to agricultural productivity, negatively impacting both yield and quality in the jamun industry. The advent of machine learning has opened up new avenues for tackling these diseases effectively. Early detection and diagnosis are essential for successful crop management. While no automated systems have yet been developed specifically for jamun leaf disease detection, various automated systems have been implemented for similar types of disease detection using image processing techniques. This paper presents a comprehensive review of machine learning methodologies employed for diagnosing plant leaf diseases through image classification, which can be adapted for jamun leaf disease detection. It meticulously assesses the strengths and limitations of various Vision Transformer models, including Transfer learning model and vision transformer (TLMViT), SLViT, SE-ViT, IterationViT, Tiny-LeViT, IEM-ViT, GreenViT, and PMViT. Additionally, the paper reviews models such as Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet)-50V2, EfficientNet, Ensemble model, Convolutional Neural Network (CNN), and Locally Reversible Transformer. These machine-learning models have been evaluated on various datasets, demonstrating their real-world applicability. This review not only sheds light on current advancements in the field but also provides valuable insights for future research directions in machine learning-based jamun leaf disease detection and classification.

Submitted: Nov 27, 2023