Paper ID: 2311.15836

Syn3DWound: A Synthetic Dataset for 3D Wound Bed Analysis

Léo Lebrat, Rodrigo Santa Cruz, Remi Chierchia, Yulia Arzhaeva, Mohammad Ali Armin, Joshua Goldsmith, Jeremy Oorloff, Prithvi Reddy, Chuong Nguyen, Lars Petersson, Michelle Barakat-Johnson, Georgina Luscombe, Clinton Fookes, Olivier Salvado, David Ahmedt-Aristizabal

Wound management poses a significant challenge, particularly for bedridden patients and the elderly. Accurate diagnostic and healing monitoring can significantly benefit from modern image analysis, providing accurate and precise measurements of wounds. Despite several existing techniques, the shortage of expansive and diverse training datasets remains a significant obstacle to constructing machine learning-based frameworks. This paper introduces Syn3DWound, an open-source dataset of high-fidelity simulated wounds with 2D and 3D annotations. We propose baseline methods and a benchmarking framework for automated 3D morphometry analysis and 2D/3D wound segmentation.

Submitted: Nov 27, 2023