Paper ID: 2311.16109
Transfer Learning between Motor Imagery Datasets using Deep Learning -- Validation of Framework and Comparison of Datasets
Pierre Guetschel, Michael Tangermann
We present a simple deep learning-based framework commonly used in computer vision and demonstrate its effectiveness for cross-dataset transfer learning in mental imagery decoding tasks that are common in the field of Brain-Computer Interfaces (BCI). We investigate, on a large selection of 12 motor-imagery datasets, which ones are well suited for transfer, both as donors and as receivers. Challenges. Deep learning models typically require long training times and are data-hungry, which impedes their use for BCI systems that have to minimize the recording time for (training) examples and are subject to constraints induced by experiments involving human subjects. A solution to both issues is transfer learning, but it comes with its own challenge, i.e., substantial data distribution shifts between datasets, subjects and even between subsequent sessions of the same subject. Approach. For every pair of pre-training (donor) and test (receiver) dataset, we first train a model on the donor before training merely an additional new linear classification layer based on a few receiver trials. Performance of this transfer approach is then tested on other trials of the receiver dataset. Significance. First, we lower the threshold to use transfer learning between motor imagery datasets: the overall framework is extremely simple and nevertheless obtains decent classification scores. Second, we demonstrate that deep learning models are a good option for motor imagery cross-dataset transfer both for the reasons outlined in the first point and because the framework presented is viable in online scenarios. Finally, analysing which datasets are best suited for transfer learning can be used as a reference for future researchers to determine which to use for pre-training or benchmarking.
Submitted: Sep 4, 2023