Paper ID: 2311.16141
Criticality-Guided Efficient Pruning in Spiking Neural Networks Inspired by Critical Brain Hypothesis
Shuo Chen, Boxiao Liu, Haihang You
Spiking Neural Networks (SNNs) have gained considerable attention due to the energy-efficient and multiplication-free characteristics. The continuous growth in scale of deep SNNs poses challenges for model deployment. Network pruning reduces hardware resource requirements of model deployment by compressing the network scale. However, existing SNN pruning methods cause high pruning costs and performance loss because the pruning iterations amplify the training difficulty of SNNs. In this paper, inspired by the critical brain hypothesis in neuroscience, we propose a regeneration mechanism based on the neuron criticality for SNN pruning to enhance feature extraction and accelerate the pruning process. Firstly, we propose a low-cost metric for the criticality in SNNs. Then, we re-rank the pruned structures after pruning and regenerate those with higher criticality to obtain the critical network. Our method achieves higher performance than the current state-of-the-art (SOTA) method with up to 95.26% reduction of pruning cost. Moreover, we investigate the underlying mechanism of our method and find that it efficiently selects potential structures and learns the consistent feature representation.
Submitted: Nov 5, 2023