Paper ID: 2311.16507

Exploring Straighter Trajectories of Flow Matching with Diffusion Guidance

Siyu Xing, Jie Cao, Huaibo Huang, Xiao-Yu Zhang, Ran He

Flow matching as a paradigm of generative model achieves notable success across various domains. However, existing methods use either multi-round training or knowledge within minibatches, posing challenges in finding a favorable coupling strategy for straight trajectories. To address this issue, we propose a novel approach, Straighter trajectories of Flow Matching (StraightFM). It straightens trajectories with the coupling strategy guided by diffusion model from entire distribution level. First, we propose a coupling strategy to straighten trajectories, creating couplings between image and noise samples under diffusion model guidance. Second, StraightFM also integrates real data to enhance training, employing a neural network to parameterize another coupling process from images to noise samples. StraightFM is jointly optimized with couplings from above two mutually complementary directions, resulting in straighter trajectories and enabling both one-step and few-step generation. Extensive experiments demonstrate that StraightFM yields high quality samples with fewer step. StraightFM generates visually appealing images with a lower FID among diffusion and traditional flow matching methods within 5 sampling steps when trained on pixel space. In the latent space (i.e., Latent Diffusion), StraightFM achieves a lower KID value compared to existing methods on the CelebA-HQ 256 dataset in fewer than 10 sampling steps.

Submitted: Nov 28, 2023