Paper ID: 2311.16564

Multi-agent statistical discriminative sub-trajectory mining and an application to NBA basketball

Rory Bunker, Vo Nguyen Le Duy, Yasuo Tabei, Ichiro Takeuchi, Keisuke Fujii

Improvements in tracking technology through optical and computer vision systems have enabled a greater understanding of the movement-based behaviour of multiple agents, including in team sports. In this study, a Multi-Agent Statistically Discriminative Sub-Trajectory Mining (MA-Stat-DSM) method is proposed that takes a set of binary-labelled agent trajectory matrices as input and incorporates Hausdorff distance to identify sub-matrices that statistically significantly discriminate between the two groups of labelled trajectory matrices. Utilizing 2015/16 SportVU NBA tracking data, agent trajectory matrices representing attacks consisting of the trajectories of five agents (the ball, shooter, last passer, shooter defender, and last passer defender), were truncated to correspond to the time interval following the receipt of the ball by the last passer, and labelled as effective or ineffective based on a definition of attack effectiveness that we devise in the current study. After identifying appropriate parameters for MA-Stat-DSM by iteratively applying it to all matches involving the two top- and two bottom-placed teams from the 2015/16 NBA season, the method was then applied to selected matches and could identify and visualize the portions of plays, e.g., involving passing, on-, and/or off-the-ball movements, which were most relevant in rendering attacks effective or ineffective.

Submitted: Nov 28, 2023