Paper ID: 2311.16856
Attentional Graph Neural Networks for Robust Massive Network Localization
Wenzhong Yan, Juntao Wang, Feng Yin, Yang Tian, Abdelhak M. Zoubir
In recent years, Graph neural networks (GNNs) have emerged as a prominent tool for classification tasks in machine learning. However, their application in regression tasks remains underexplored. To tap the potential of GNNs in regression, this paper integrates GNNs with attention mechanism, a technique that revolutionized sequential learning tasks with its adaptability and robustness, to tackle a challenging nonlinear regression problem: network localization. We first introduce a novel network localization method based on graph convolutional network (GCN), which exhibits exceptional precision even under severe non-line-of-sight (NLOS) conditions, thereby diminishing the need for laborious offline calibration or NLOS identification. We further propose an attentional graph neural network (AGNN) model, aimed at improving the limited flexibility and mitigating the high sensitivity to the hyperparameter of the GCN-based method. The AGNN comprises two crucial modules, each designed with distinct attention architectures to address specific issues associated with the GCN-based method, rendering it more practical in real-world scenarios. Experimental results substantiate the efficacy of our proposed GCN-based method and AGNN model, as well as the enhancements of AGNN model. Additionally, we delve into the performance improvements of AGNN model by analyzing it from the perspectives of dynamic attention and computational complexity.
Submitted: Nov 28, 2023