Paper ID: 2311.17898

Knowledge Pursuit Prompting for Zero-Shot Multimodal Synthesis

Jinqi Luo, Kwan Ho Ryan Chan, Dimitris Dimos, René Vidal

Hallucinations and unfaithful synthesis due to inaccurate prompts with insufficient semantic details are widely observed in multimodal generative models. A prevalent strategy to align multiple modalities is to fine-tune the generator with a large number of annotated text-image pairs. However, such a procedure is labor-consuming and resource-draining. The key question we ask is: can we enhance the quality and faithfulness of text-driven generative models beyond extensive text-image pair annotations? To address this question, we propose Knowledge Pursuit Prompting (KPP), a zero-shot framework that iteratively incorporates external knowledge to help generators produce reliable visual content. Instead of training generators to handle generic prompts, KPP employs a recursive knowledge query process to gather informative external facts from the knowledge base, instructs a language model to compress the acquired knowledge for prompt refinement, and utilizes text-driven generators for visual synthesis. The entire process is zero-shot, without accessing the architectures and parameters of generative models. We evaluate the framework across multiple text-driven generative tasks (image, 3D rendering, and video) on datasets of different domains. We further demonstrate the extensibility and adaptability of KPP through varying foundation model bases and instructions. Our results show that KPP is capable of generating faithful and semantically rich content across diverse visual domains, offering a promising solution to improve multimodal generative models.

Submitted: Nov 29, 2023