Paper ID: 2311.18438
Solution-Set Geometry and Regularization Path of a Nonconvexly Regularized Convex Sparse Model
Yi Zhang, Isao Yamada
The generalized minimax concave (GMC) penalty is a nonconvex sparse regularizer which can preserve the overall-convexity of the regularized least-squares problem. In this paper, we focus on a significant instance of the GMC model termed scaled GMC (sGMC), and present various notable findings on its solution-set geometry and regularization path. Our investigation indicates that while the sGMC penalty is a nonconvex extension of the LASSO penalty (i.e., the $\ell_1$-norm), the sGMC model preserves many celebrated properties of the LASSO model, hence can serve as a less biased surrogate of LASSO without losing its advantages. Specifically, for a fixed regularization parameter $\lambda$, we show that the solution-set geometry, solution uniqueness and sparseness of the sGMC model can be characterized in a similar elegant way to the LASSO model (see, e.g., Osborne et al. 2000, R. J. Tibshirani 2013). For a varying $\lambda$, we prove that the sGMC solution set is a continuous polytope-valued mapping of $\lambda$. Most noticeably, our study indicates that similar to LASSO, the minimum $\ell_2$-norm regularization path of the sGMC model is continuous and piecewise linear in $\lambda$. Based on these theoretical results, an efficient regularization path algorithm is proposed for the sGMC model, extending the well-known least angle regression (LARS) algorithm for LASSO. We prove the correctness and finite termination of the proposed algorithm under a mild assumption, and confirm its correctness-in-general-situation, efficiency, and practical utility through numerical experiments. Many results in this study also contribute to the theoretical research of LASSO.
Submitted: Nov 30, 2023