Paper ID: 2312.00035
FBChain: A Blockchain-based Federated Learning Model with Efficiency and Secure Communication
Yang Li, Chunhe Xia, Wei Liu, Weidong Zhou, Chen Chen, Tianbo Wang
Privacy and security in the parameter transmission process of federated learning are currently among the most prominent concerns. However, there are two thorny problems caused by unprotected communication methods: "parameter-leakage" and "inefficient-communication". This article proposes Blockchain-based Federated Learning (FBChain) model for federated learning parameter communication to overcome the above two problems. First, we utilize the immutability of blockchain to store the global model and hash value of local model parameters in case of tampering during the communication process, protect data privacy by encrypting parameters, and verify data consistency by comparing the hash values of local parameters, thus addressing the "parameter-leakage" problem. Second, the Proof of Weighted Link Speed (PoWLS) consensus algorithm comprehensively selects nodes with the higher weighted link speed to aggregate global model and package blocks, thereby solving the "inefficient-communication" problem. Experimental results demonstrate the effectiveness of our proposed FBChain model and its ability to improve model communication efficiency in federated learning.
Submitted: Nov 21, 2023