Paper ID: 2312.00258
Precipitation Nowcasting With Spatial And Temporal Transfer Learning Using Swin-UNETR
Ajitabh Kumar
Climate change has led to an increase in frequency of extreme weather events. Early warning systems can prevent disasters and loss of life. Managing such events remain a challenge for both public and private institutions. Precipitation nowcasting can help relevant institutions to better prepare for such events. Numerical weather prediction (NWP) has traditionally been used to make physics based forecasting, and recently deep learning based approaches have been used to reduce turn-around time for nowcasting. In this work, recently proposed Swin-UNETR (Swin UNEt TRansformer) is used for precipitation nowcasting for ten different regions of Europe. Swin-UNETR utilizes a U-shaped network within which a swin transformer-based encoder extracts multi-scale features from multiple input channels of satellite image, while CNN-based decoder makes the prediction. Trained model is capable of nowcasting not only for the regions for which data is available, but can also be used for new regions for which data is not available.
Submitted: Nov 29, 2023