Paper ID: 2312.00313
Improving Normalization with the James-Stein Estimator
Seyedalireza Khoshsirat, Chandra Kambhamettu
Stein's paradox holds considerable sway in high-dimensional statistics, highlighting that the sample mean, traditionally considered the de facto estimator, might not be the most efficacious in higher dimensions. To address this, the James-Stein estimator proposes an enhancement by steering the sample means toward a more centralized mean vector. In this paper, first, we establish that normalization layers in deep learning use inadmissible estimators for mean and variance. Next, we introduce a novel method to employ the James-Stein estimator to improve the estimation of mean and variance within normalization layers. We evaluate our method on different computer vision tasks: image classification, semantic segmentation, and 3D object classification. Through these evaluations, it is evident that our improved normalization layers consistently yield superior accuracy across all tasks without extra computational burden. Moreover, recognizing that a plethora of shrinkage estimators surpass the traditional estimator in performance, we study two other prominent shrinkage estimators: Ridge and LASSO. Additionally, we provide visual representations to intuitively demonstrate the impact of shrinkage on the estimated layer statistics. Finally, we study the effect of regularization and batch size on our modified batch normalization. The studies show that our method is less sensitive to batch size and regularization, improving accuracy under various setups.
Submitted: Dec 1, 2023