Paper ID: 2312.00435
Enhancing Image Captioning with Neural Models
Pooja Bhatnagar, Sai Mrunaal, Sachin Kamnure
This research explores the realm of neural image captioning using deep learning models. The study investigates the performance of different neural architecture configurations, focusing on the inject architecture, and proposes a novel quality metric for evaluating caption generation. Through extensive experimentation and analysis, this work sheds light on the challenges and opportunities in image captioning, providing insights into model behavior and overfitting. The results reveal that while the merge models exhibit a larger vocabulary and higher ROUGE scores, the inject architecture generates relevant and concise image captions. The study also highlights the importance of refining training data and optimizing hyperparameters for improved model performance. This research contributes to the growing body of knowledge in neural image captioning and encourages further exploration in the field, emphasizing the democratization of artificial intelligence.
Submitted: Dec 1, 2023