Paper ID: 2312.01299

Robust Non-parametric Knowledge-based Diffusion Least Mean Squares over Adaptive Networks

Soheil Ashkezari-Toussi, Hadi sadoghi-Yazdi

The present study proposes incorporating non-parametric knowledge into the diffusion least-mean-squares algorithm in the framework of a maximum a posteriori (MAP) estimation. The proposed algorithm leads to a robust estimation of an unknown parameter vector in a group of cooperative estimators. Utilizing kernel density estimation and buffering some intermediate estimations, the prior distribution and conditional likelihood of the parameters vector in each node are calculated. Pseudo Huber loss function is used for designing the likelihood function. Also, an error thresholding function is defined to reduce the computational overhead as well as more relaxation against noise, which stops the update every time an error is less than a predefined threshold. The performance of the proposed algorithm is examined in the stationary and non-stationary scenarios in the presence of Gaussian and non-Gaussian noise. Results show the robustness of the proposed algorithm in the presence of different noise types.

Submitted: Dec 3, 2023