Paper ID: 2312.02008
Multi-Agent Behavior Retrieval: Retrieval-Augmented Policy Training for Cooperative Push Manipulation by Mobile Robots
So Kuroki, Mai Nishimura, Tadashi Kozuno
Due to the complex interactions between agents, learning multi-agent control policy often requires a prohibited amount of data. This paper aims to enable multi-agent systems to effectively utilize past memories to adapt to novel collaborative tasks in a data-efficient fashion. We propose the Multi-Agent Coordination Skill Database, a repository for storing a collection of coordinated behaviors associated with key vectors distinctive to them. Our Transformer-based skill encoder effectively captures spatio-temporal interactions that contribute to coordination and provides a unique skill representation for each coordinated behavior. By leveraging only a small number of demonstrations of the target task, the database enables us to train the policy using a dataset augmented with the retrieved demonstrations. Experimental evaluations demonstrate that our method achieves a significantly higher success rate in push manipulation tasks compared with baseline methods like few-shot imitation learning. Furthermore, we validate the effectiveness of our retrieve-and-learn framework in a real environment using a team of wheeled robots.
Submitted: Dec 4, 2023