Paper ID: 2312.03037

Analysis and mining of low-carbon and energy-saving tourism data characteristics based on machine learning algorithm

Lukasz Wierzbinski

In order to study the formation mechanism of residents' low-carbon awareness and provide an important basis for traffic managers to guide urban residents to choose low-carbon travel mode, this paper proposes a low-carbon energy-saving travel data feature analysis and mining based on machine learning algorithm. This paper uses data mining technology to analyze the data of low-carbon travel questionnaire, and regards the 15-dimensional problem under the framework of planned behavior theory as the internal cause variable that characterizes residents' low-carbon travel willingness. The author uses K-means clustering algorithm to classify the intensity of residents' low-carbon travel willingness, and applies the results as the explanatory variables to the random forest model to explore the mechanism of residents' social attribute characteristics, travel characteristics, etc. on their low-carbon travel willingness. The experimental results show that based on the Silhouette index test and t-SNE dimensionality reduction, residents' low-carbon travel willingness can be divided into three categories: strong, neutral, and not strong; Based on the importance index, the four most significant factors are the occupation, residence, family composition and commuting time of residents. Conclusion: This method provides policy recommendations for the development and management of urban traffic low-carbon from multiple perspectives.

Submitted: Dec 4, 2023