Paper ID: 2312.04062

A Low-Overhead Incorporation-Extrapolation based Few-Shot CSI Feedback Framework for Massive MIMO Systems

Binggui Zhou, Xi Yang, Jintao Wang, Shaodan Ma, Feifei Gao, Guanghua Yang

Accurate channel state information (CSI) is essential for downlink precoding in frequency division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems with orthogonal frequency-division multiplexing (OFDM). However, obtaining CSI through feedback from the user equipment (UE) becomes challenging with the increasing scale of antennas and subcarriers and leads to extremely high CSI feedback overhead. Deep learning-based methods have emerged for compressing CSI but these methods generally require substantial collected samples and thus pose practical challenges. Moreover, existing deep learning methods also suffer from dramatically growing feedback overhead owing to their focus on full-dimensional CSI feedback. To address these issues, we propose a low-overhead Incorporation-Extrapolation based Few-Shot CSI feedback Framework (IEFSF) for massive MIMO systems. An incorporation-extrapolation scheme for eigenvector-based CSI feedback is proposed to reduce the feedback overhead. Then, to alleviate the necessity of extensive collected samples and enable few-shot CSI feedback, we further propose a knowledge-driven data augmentation (KDDA) method and an artificial intelligence-generated content (AIGC) -based data augmentation method by exploiting the domain knowledge of wireless channels and by exploiting a novel generative model, respectively. Experimental results based on the DeepMIMO dataset demonstrate that the proposed IEFSF significantly reduces CSI feedback overhead by 64 times compared with existing methods while maintaining higher feedback accuracy using only several hundred collected samples.

Submitted: Dec 7, 2023