Paper ID: 2312.04236
Detecting and Restoring Non-Standard Hands in Stable Diffusion Generated Images
Yiqun Zhang, Zhenyue Qin, Yang Liu, Dylan Campbell
We introduce a pipeline to address anatomical inaccuracies in Stable Diffusion generated hand images. The initial step involves constructing a specialized dataset, focusing on hand anomalies, to train our models effectively. A finetuned detection model is pivotal for precise identification of these anomalies, ensuring targeted correction. Body pose estimation aids in understanding hand orientation and positioning, crucial for accurate anomaly correction. The integration of ControlNet and InstructPix2Pix facilitates sophisticated inpainting and pixel-level transformation, respectively. This dual approach allows for high-fidelity image adjustments. This comprehensive approach ensures the generation of images with anatomically accurate hands, closely resembling real-world appearances. Our experimental results demonstrate the pipeline's efficacy in enhancing hand image realism in Stable Diffusion outputs. We provide an online demo at https://fixhand.yiqun.io
Submitted: Dec 7, 2023