Paper ID: 2312.04862

Damage GAN: A Generative Model for Imbalanced Data

Ali Anaissi, Yuanzhe Jia, Ali Braytee, Mohamad Naji, Widad Alyassine

This study delves into the application of Generative Adversarial Networks (GANs) within the context of imbalanced datasets. Our primary aim is to enhance the performance and stability of GANs in such datasets. In pursuit of this objective, we introduce a novel network architecture known as Damage GAN, building upon the ContraD GAN framework which seamlessly integrates GANs and contrastive learning. Through the utilization of contrastive learning, the discriminator is trained to develop an unsupervised representation capable of distinguishing all provided samples. Our approach draws inspiration from the straightforward framework for contrastive learning of visual representations (SimCLR), leading to the formulation of a distinctive loss function. We also explore the implementation of self-damaging contrastive learning (SDCLR) to further enhance the optimization of the ContraD GAN model. Comparative evaluations against baseline models including the deep convolutional GAN (DCGAN) and ContraD GAN demonstrate the evident superiority of our proposed model, Damage GAN, in terms of generated image distribution, model stability, and image quality when applied to imbalanced datasets.

Submitted: Dec 8, 2023