Paper ID: 2312.05023

Reinforcement Learning-Based Bionic Reflex Control for Anthropomorphic Robotic Grasping exploiting Domain Randomization

Hirakjyoti Basumatary, Daksh Adhar, Atharva Shrawge, Prathamesh Kanbaskar, Shyamanta M. Hazarika

Achieving human-level dexterity in robotic grasping remains a challenging endeavor. Robotic hands frequently encounter slippage and deformation during object manipulation, issues rarely encountered by humans due to their sensory receptors, experiential learning, and motor memory. The emulation of the human grasping reflex within robotic hands is referred to as the ``bionic reflex". Past endeavors in the realm of bionic reflex control predominantly relied on model-based and supervised learning approaches, necessitating human intervention during thresholding and labeling tasks. In this study, we introduce an innovative bionic reflex control pipeline, leveraging reinforcement learning (RL); thereby eliminating the need for human intervention during control design. Our proposed bionic reflex controller has been designed and tested on an anthropomorphic hand, manipulating deformable objects in the PyBullet physics simulator, incorporating domain randomization (DR) for enhanced Sim2Real transferability. Our findings underscore the promise of RL as a potent tool for advancing bionic reflex control within anthropomorphic robotic hands. We anticipate that this autonomous, RL-based bionic reflex controller will catalyze the development of dependable and highly efficient robotic and prosthetic hands, revolutionizing human-robot interaction and assistive technologies.

Submitted: Dec 8, 2023