Paper ID: 2312.07420

FairSISA: Ensemble Post-Processing to Improve Fairness of Unlearning in LLMs

Swanand Ravindra Kadhe, Anisa Halimi, Ambrish Rawat, Nathalie Baracaldo

Training large language models (LLMs) is a costly endeavour in terms of time and computational resources. The large amount of training data used during the unsupervised pre-training phase makes it difficult to verify all data and, unfortunately, undesirable data may be ingested during training. Re-training from scratch is impractical and has led to the creation of the 'unlearning' discipline where models are modified to "unlearn" undesirable information without retraining. However, any modification can alter the behaviour of LLMs, especially on key dimensions such as fairness. This is the first work that examines this interplay between unlearning and fairness for LLMs. In particular, we focus on a popular unlearning framework known as SISA [Bourtoule et al., 2021], which creates an ensemble of models trained on disjoint shards. We evaluate the performance-fairness trade-off for SISA, and empirically demsontrate that SISA can indeed reduce fairness in LLMs. To remedy this, we propose post-processing bias mitigation techniques for ensemble models produced by SISA. We adapt the post-processing fairness improvement technique from [Hardt et al., 2016] to design three methods that can handle model ensembles, and prove that one of the methods is an optimal fair predictor for ensemble of models. Through experimental results, we demonstrate the efficacy of our post-processing framework called 'FairSISA'.

Submitted: Dec 12, 2023