Paper ID: 2312.07546
Decoding Working-Memory Load During n-Back Task Performance from High Channel NIRS Data
Christian Kothe, Grant Hanada, Sean Mullen, Tim Mullen
Near-infrared spectroscopy (NIRS) can measure neural activity through blood oxygenation changes in the brain in a wearable form factor, enabling unique applications for research in and outside the lab. NIRS has proven capable of measuring cognitive states such as mental workload, often using machine learning (ML) based brain-computer interfaces (BCIs). To date, NIRS research has largely relied on probes with under ten to several hundred channels, although recently a new class of wearable NIRS devices with thousands of channels has emerged. This poses unique challenges for ML classification, as NIRS is typically limited by few training trials which results in severely under-determined estimation problems. So far, it is not well understood how such high-resolution data is best leveraged in practical BCIs and whether state-of-the-art (SotA) or better performance can be achieved. To address these questions, we propose an ML strategy to classify working-memory load that relies on spatio-temporal regularization and transfer learning from other subjects in a combination that has not been used in previous NIRS BCIs. The approach can be interpreted as an end-to-end generalized linear model and allows for a high degree of interpretability using channel-level or cortical imaging approaches. We show that using the proposed methodology, it is possible to achieve SotA decoding performance with high-resolution NIRS data. We also replicated several SotA approaches on our dataset of 43 participants wearing a 3198 dual-channel NIRS device while performing the n-Back task and show that these existing methods struggle in the high-channel regime and are largely outperformed by the proposed method. Our approach helps establish high-channel NIRS devices as a viable platform for SotA BCI and opens new applications using this class of headset while also enabling high-resolution model imaging and interpretation.
Submitted: Dec 6, 2023