Paper ID: 2312.07621

Spatiotemporal Event Graphs for Dynamic Scene Understanding

Salman Khan

Dynamic scene understanding is the ability of a computer system to interpret and make sense of the visual information present in a video of a real-world scene. In this thesis, we present a series of frameworks for dynamic scene understanding starting from road event detection from an autonomous driving perspective to complex video activity detection, followed by continual learning approaches for the life-long learning of the models. Firstly, we introduce the ROad event Awareness Dataset (ROAD) for Autonomous Driving, to our knowledge the first of its kind. Due to the lack of datasets equipped with formally specified logical requirements, we also introduce the ROad event Awareness Dataset with logical Requirements (ROAD-R), the first publicly available dataset for autonomous driving with requirements expressed as logical constraints, as a tool for driving neurosymbolic research in the area. Next, we extend event detection to holistic scene understanding by proposing two complex activity detection methods. In the first method, we present a deformable, spatiotemporal scene graph approach, consisting of three main building blocks: action tube detection, a 3D deformable RoI pooling layer designed for learning the flexible, deformable geometry of the constituent action tubes, and a scene graph constructed by considering all parts as nodes and connecting them based on different semantics. In a second approach evolving from the first, we propose a hybrid graph neural network that combines attention applied to a graph encoding of the local (short-term) dynamic scene with a temporal graph modelling the overall long-duration activity. Finally, the last part of the thesis is about presenting a new continual semi-supervised learning (CSSL) paradigm.

Submitted: Dec 11, 2023