Paper ID: 2312.07769
Incremental hierarchical text clustering methods: a review
Fernando Simeone, Maik Olher Chaves, Ahmed Esmin
The growth in Internet usage has contributed to a large volume of continuously available data, and has created the need for automatic and efficient organization of the data. In this context, text clustering techniques are significant because they aim to organize documents according to their characteristics. More specifically, hierarchical and incremental clustering techniques can organize dynamic data in a hierarchical form, thus guaranteeing that this organization is updated and its exploration is facilitated. Based on the relevance and contemporary nature of the field, this study aims to analyze various hierarchical and incremental clustering techniques; the main contribution of this research is the organization and comparison of the techniques used by studies published between 2010 and 2018 that aimed to texts documents clustering. We describe the principal concepts related to the challenge and the different characteristics of these published works in order to provide a better understanding of the research in this field.
Submitted: Dec 12, 2023