Paper ID: 2312.07849

Encoder-minimal and Decoder-minimal Framework for Remote Sensing Image Dehazing

Yuanbo Wen, Tao Gao, Ziqi Li, Jing Zhang, Ting Chen

Haze obscures remote sensing images, hindering valuable information extraction. To this end, we propose RSHazeNet, an encoder-minimal and decoder-minimal framework for efficient remote sensing image dehazing. Specifically, regarding the process of merging features within the same level, we develop an innovative module called intra-level transposed fusion module (ITFM). This module employs adaptive transposed self-attention to capture comprehensive context-aware information, facilitating the robust context-aware feature fusion. Meanwhile, we present a cross-level multi-view interaction module (CMIM) to enable effective interactions between features from various levels, mitigating the loss of information due to the repeated sampling operations. In addition, we propose a multi-view progressive extraction block (MPEB) that partitions the features into four distinct components and employs convolution with varying kernel sizes, groups, and dilation factors to facilitate view-progressive feature learning. Extensive experiments demonstrate the superiority of our proposed RSHazeNet. We release the source code and all pre-trained models at \url{https://github.com/chdwyb/RSHazeNet}.

Submitted: Dec 13, 2023