Paper ID: 2312.08096
An Incentive Mechanism for Federated Learning Based on Multiple Resource Exchange
Ruonan Dong, Hui Xu, Han Zhang, GuoPeng Zhang
Federated Learning (FL) is a distributed machine learning paradigm that addresses privacy concerns in machine learning and still guarantees high test accuracy. However, achieving the necessary accuracy by having all clients participate in FL is impractical, given the constraints of client local computing resource. In this paper, we introduce a multi-user collaborative computing framework, categorizing users into two roles: model owners (MOs) and data owner (DOs). Without resorting to monetary incentives, an MO can encourage more DOs to join in FL by allowing the DOs to offload extra local computing tasks to the MO for execution. This exchange of "data" for "computing resources" streamlines the incentives for clients to engage more effectively in FL. We formulate the interaction between MO and DOs as an optimization problem, and the objective is to effectively utilize the communication and computing resource of the MO and DOs to minimize the time to complete an FL task. The proposed problem is a mixed integer nonlinear programming (MINLP) with high computational complexity. We first decompose it into two distinct subproblems, namely the client selection problem and the resource allocation problem to segregate the integer variables from the continuous variables. Then, an effective iterative algorithm is proposed to solve problem. Simulation results demonstrate that the proposed collaborative computing framework can achieve an accuracy of more than 95\% while minimizing the overall time to complete an FL task.
Submitted: Dec 13, 2023