Paper ID: 2312.08579
Identifying Planetary Names in Astronomy Papers: A Multi-Step Approach
Golnaz Shapurian, Michael J Kurtz, Alberto Accomazzi
The automatic identification of planetary feature names in astronomy publications presents numerous challenges. These features include craters, defined as roughly circular depressions resulting from impact or volcanic activity; dorsas, which are elongate raised structures or wrinkle ridges; and lacus, small irregular patches of dark, smooth material on the Moon, referred to as "lake" (Planetary Names Working Group, n.d.). Many feature names overlap with places or people's names that they are named after, for example, Syria, Tempe, Einstein, and Sagan, to name a few (U.S. Geological Survey, n.d.). Some feature names have been used in many contexts, for instance, Apollo, which can refer to mission, program, sample, astronaut, seismic, seismometers, core, era, data, collection, instrument, and station, in addition to the crater on the Moon. Some feature names can appear in the text as adjectives, like the lunar craters Black, Green, and White. Some feature names in other contexts serve as directions, like craters West and South on the Moon. Additionally, some features share identical names across different celestial bodies, requiring disambiguation, such as the Adams crater, which exists on both the Moon and Mars. We present a multi-step pipeline combining rule-based filtering, statistical relevance analysis, part-of-speech (POS) tagging, named entity recognition (NER) model, hybrid keyword harvesting, knowledge graph (KG) matching, and inference with a locally installed large language model (LLM) to reliably identify planetary names despite these challenges. When evaluated on a dataset of astronomy papers from the Astrophysics Data System (ADS), this methodology achieves an F1-score over 0.97 in disambiguating planetary feature names.
Submitted: Dec 14, 2023