Paper ID: 2312.09939

Quantum Generative Adversarial Networks: Bridging Classical and Quantum Realms

Sahil Nokhwal, Suman Nokhwal, Saurabh Pahune, Ankit Chaudhary

In this pioneering research paper, we present a groundbreaking exploration into the synergistic fusion of classical and quantum computing paradigms within the realm of Generative Adversarial Networks (GANs). Our objective is to seamlessly integrate quantum computational elements into the conventional GAN architecture, thereby unlocking novel pathways for enhanced training processes. Drawing inspiration from the inherent capabilities of quantum bits (qubits), we delve into the incorporation of quantum data representation methodologies within the GAN framework. By capitalizing on the unique quantum features, we aim to accelerate the training process of GANs, offering a fresh perspective on the optimization of generative models. Our investigation deals with theoretical considerations and evaluates the potential quantum advantages that may manifest in terms of training efficiency and generative quality. We confront the challenges inherent in the quantum-classical amalgamation, addressing issues related to quantum hardware constraints, error correction mechanisms, and scalability considerations. This research is positioned at the forefront of quantum-enhanced machine learning, presenting a critical stride towards harnessing the computational power of quantum systems to expedite the training of Generative Adversarial Networks. Through our comprehensive examination of the interface between classical and quantum realms, we aim to uncover transformative insights that will propel the field forward, fostering innovation and advancing the frontier of quantum machine learning.

Submitted: Dec 15, 2023