Paper ID: 2312.10008

Movement Primitive Diffusion: Learning Gentle Robotic Manipulation of Deformable Objects

Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann, Rudolf Lioutikov, Franziska Mathis-Ullrich

Policy learning in robot-assisted surgery (RAS) lacks data efficient and versatile methods that exhibit the desired motion quality for delicate surgical interventions. To this end, we introduce Movement Primitive Diffusion (MPD), a novel method for imitation learning (IL) in RAS that focuses on gentle manipulation of deformable objects. The approach combines the versatility of diffusion-based imitation learning (DIL) with the high-quality motion generation capabilities of Probabilistic Dynamic Movement Primitives (ProDMPs). This combination enables MPD to achieve gentle manipulation of deformable objects, while maintaining data efficiency critical for RAS applications where demonstration data is scarce. We evaluate MPD across various simulated and real world robotic tasks on both state and image observations. MPD outperforms state-of-the-art DIL methods in success rate, motion quality, and data efficiency. Project page: https://scheiklp.github.io/movement-primitive-diffusion/

Submitted: Dec 15, 2023