Paper ID: 2312.10109

Enlighten-Your-Voice: When Multimodal Meets Zero-shot Low-light Image Enhancement

Xiaofeng Zhang, Zishan Xu, Hao Tang, Chaochen Gu, Wei Chen, Shanying Zhu, Xinping Guan

Low-light image enhancement is a crucial visual task, and many unsupervised methods tend to overlook the degradation of visible information in low-light scenes, which adversely affects the fusion of complementary information and hinders the generation of satisfactory results. To address this, our study introduces "Enlighten-Your-Voice", a multimodal enhancement framework that innovatively enriches user interaction through voice and textual commands. This approach does not merely signify a technical leap but also represents a paradigm shift in user engagement. Our model is equipped with a Dual Collaborative Attention Module (DCAM) that meticulously caters to distinct content and color discrepancies, thereby facilitating nuanced enhancements. Complementarily, we introduce a Semantic Feature Fusion (SFM) plug-and-play module that synergizes semantic context with low-light enhancement operations, sharpening the algorithm's efficacy. Crucially, "Enlighten-Your-Voice" showcases remarkable generalization in unsupervised zero-shot scenarios. The source code can be accessed from https://github.com/zhangbaijin/Enlighten-Your-Voice

Submitted: Dec 15, 2023