Paper ID: 2312.10528

Cross-Linguistic Offensive Language Detection: BERT-Based Analysis of Bengali, Assamese, & Bodo Conversational Hateful Content from Social Media

Jhuma Kabir Mim, Mourad Oussalah, Akash Singhal

In today's age, social media reigns as the paramount communication platform, providing individuals with the avenue to express their conjectures, intellectual propositions, and reflections. Unfortunately, this freedom often comes with a downside as it facilitates the widespread proliferation of hate speech and offensive content, leaving a deleterious impact on our world. Thus, it becomes essential to discern and eradicate such offensive material from the realm of social media. This article delves into the comprehensive results and key revelations from the HASOC-2023 offensive language identification result. The primary emphasis is placed on the meticulous detection of hate speech within the linguistic domains of Bengali, Assamese, and Bodo, forming the framework for Task 4: Annihilate Hates. In this work, we used BERT models, including XML-Roberta, L3-cube, IndicBERT, BenglaBERT, and BanglaHateBERT. The research outcomes were promising and showed that XML-Roberta-lagre performed better than monolingual models in most cases. Our team 'TeamBD' achieved rank 3rd for Task 4 - Assamese, & 5th for Bengali.

Submitted: Dec 16, 2023