Paper ID: 2312.10669

Analisis Eksploratif Dan Augmentasi Data NSL-KDD Menggunakan Deep Generative Adversarial Networks Untuk Meningkatkan Performa Algoritma Extreme Gradient Boosting Dalam Klasifikasi Jenis Serangan Siber

K. P. Santoso, F. A. Madany, H. Suryotrisongko

This study proposes the implementation of Deep Generative Adversarial Networks (GANs) for augmenting the NSL-KDD dataset. The primary objective is to enhance the efficacy of eXtreme Gradient Boosting (XGBoost) in the classification of cyber-attacks on the NSL-KDD dataset. As a result, the method proposed in this research achieved an accuracy of 99.53% using the XGBoost model without data augmentation with GAN, and 99.78% with data augmentation using GAN.

Submitted: Dec 17, 2023