Paper ID: 2312.11062
Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction
Frank Mtumbuka, Steven Schockaert
Relation extraction is essentially a text classification problem, which can be tackled by fine-tuning a pre-trained language model (LM). However, a key challenge arises from the fact that relation extraction cannot straightforwardly be reduced to sequence or token classification. Existing approaches therefore solve the problem in an indirect way: they fine-tune an LM to learn embeddings of the head and tail entities, and then predict the relationship from these entity embeddings. Our hypothesis in this paper is that relation extraction models can be improved by capturing relationships in a more direct way. In particular, we experiment with appending a prompt with a [MASK] token, whose contextualised representation is treated as a relation embedding. While, on its own, this strategy significantly underperforms the aforementioned approach, we find that the resulting relation embeddings are highly complementary to what is captured by embeddings of the head and tail entity. By jointly considering both types of representations, we end up with a simple model that outperforms the state-of-the-art across several relation extraction benchmarks.
Submitted: Dec 18, 2023