Paper ID: 2312.12065

PPO-Clip Attains Global Optimality: Towards Deeper Understandings of Clipping

Nai-Chieh Huang, Ping-Chun Hsieh, Kuo-Hao Ho, I-Chen Wu

Proximal Policy Optimization algorithm employing a clipped surrogate objective (PPO-Clip) is a prominent exemplar of the policy optimization methods. However, despite its remarkable empirical success, PPO-Clip lacks theoretical substantiation to date. In this paper, we contribute to the field by establishing the first global convergence results of a PPO-Clip variant in both tabular and neural function approximation settings. Our findings highlight the $O(1/\sqrt{T})$ min-iterate convergence rate specifically in the context of neural function approximation. We tackle the inherent challenges in analyzing PPO-Clip through three central concepts: (i) We introduce a generalized version of the PPO-Clip objective, illuminated by its connection with the hinge loss. (ii) Employing entropic mirror descent, we establish asymptotic convergence for tabular PPO-Clip with direct policy parameterization. (iii) Inspired by the tabular analysis, we streamline convergence analysis by introducing a two-step policy improvement approach. This decouples policy search from complex neural policy parameterization using a regression-based update scheme. Furthermore, we gain deeper insights into the efficacy of PPO-Clip by interpreting these generalized objectives. Our theoretical findings also mark the first characterization of the influence of the clipping mechanism on PPO-Clip convergence. Importantly, the clipping range affects only the pre-constant of the convergence rate.

Submitted: Dec 19, 2023