Paper ID: 2312.12417
Device Scheduling for Relay-assisted Over-the-Air Aggregation in Federated Learning
Fan Zhang, Jining Chen, Kunlun Wang, Wen Chen
Federated learning (FL) leverages data distributed at the edge of the network to enable intelligent applications. The efficiency of FL can be improved by using over-the-air computation (AirComp) technology in the process of gradient aggregation. In this paper, we propose a relay-assisted large-scale FL framework, and investigate the device scheduling problem in relay-assisted FL systems under the constraints of power consumption and mean squared error (MSE). we formulate a joint device scheduling, and power allocation problem to maximize the number of scheduled devices. We solve the resultant non-convex optimization problem by transforming the optimization problem into multiple sparse optimization problems. By the proposed device scheduling algorithm, these sparse sub-problems are solved and the maximum number of federated learning edge devices is obtained. The simulation results demonstrate the effectiveness of the proposed scheme as compared with other benchmark schemes.
Submitted: Dec 15, 2023