Paper ID: 2312.12461

Bird Movement Prediction Using Long Short-Term Memory Networks to Prevent Bird Strikes with Low Altitude Aircraft

Elaheh Sabziyan Varnousfaderani, Syed A. M. Shihab

The number of collisions between aircraft and birds in the airspace has been increasing at an alarming rate over the past decade due to increasing bird population, air traffic and usage of quieter aircraft. Bird strikes with aircraft are anticipated to increase dramatically when emerging Advanced Air Mobility aircraft start operating in the low altitude airspace where probability of bird strikes is the highest. Not only do such bird strikes can result in human and bird fatalities, but they also cost the aviation industry millions of dollars in damages to aircraft annually. To better understand the causes and effects of bird strikes, research to date has mainly focused on analyzing factors which increase the probability of bird strikes, identifying high risk birds in different locations, predicting the future number of bird strike incidents, and estimating cost of bird strike damages. However, research on bird movement prediction for use in flight planning algorithms to minimize the probability of bird strikes is very limited. To address this gap in research, we implement four different types of Long Short-Term Memory (LSTM) models to predict bird movement latitudes and longitudes. A publicly available data set on the movement of pigeons is utilized to train the models and evaluate their performances. Using the bird flight track predictions, aircraft departures from Cleveland Hopkins airport are simulated to be delayed by varying amounts to avoid potential bird strikes with aircraft during takeoff. Results demonstrate that the LSTM models can predict bird movement with high accuracy, achieving a Mean Absolute Error of less than 100 meters, outperforming linear and nonlinear regression models. Our findings indicate that incorporating bird movement prediction into flight planning can be highly beneficial.

Submitted: Dec 17, 2023