Paper ID: 2312.13008
No More Shortcuts: Realizing the Potential of Temporal Self-Supervision
Ishan Rajendrakumar Dave, Simon Jenni, Mubarak Shah
Self-supervised approaches for video have shown impressive results in video understanding tasks. However, unlike early works that leverage temporal self-supervision, current state-of-the-art methods primarily rely on tasks from the image domain (e.g., contrastive learning) that do not explicitly promote the learning of temporal features. We identify two factors that limit existing temporal self-supervision: 1) tasks are too simple, resulting in saturated training performance, and 2) we uncover shortcuts based on local appearance statistics that hinder the learning of high-level features. To address these issues, we propose 1) a more challenging reformulation of temporal self-supervision as frame-level (rather than clip-level) recognition tasks and 2) an effective augmentation strategy to mitigate shortcuts. Our model extends a representation of single video frames, pre-trained through contrastive learning, with a transformer that we train through temporal self-supervision. We demonstrate experimentally that our more challenging frame-level task formulations and the removal of shortcuts drastically improve the quality of features learned through temporal self-supervision. The generalization capability of our self-supervised video method is evidenced by its state-of-the-art performance in a wide range of high-level semantic tasks, including video retrieval, action classification, and video attribute recognition (such as object and scene identification), as well as low-level temporal correspondence tasks like video object segmentation and pose tracking. Additionally, we show that the video representations learned through our method exhibit increased robustness to the input perturbations.
Submitted: Dec 20, 2023